Measurement and Analysis of the ν_4 Band of Fluoroform and Its Molecular Constants

Susumu Sofue,[†] Kentarou Kawaguchi, Eizi Hirota, and Tsunetake Fujiyama*

Institute for Molecular Science, Myodaiji, Okazaki 444

†Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Setagaya-ku, Tokyo 158

(Received August 30, 1980)

The v_4 fundamental of fluoroform has been measured with a tunable diode-laser source spectrometer. The following molecular constants were determined: $v_0=1377.8458~\mathrm{cm^{-1}}$, $B_4=0.344788~\mathrm{cm^{-1}}$, $C_4=0.189134~\mathrm{cm^{-1}}$, $C_4=0.18619~\mathrm{cm^{-1}}$, $C_4=0.189134~\mathrm{cm^{-1}}$, $C_4=0.18619~\mathrm{cm^{-1}}$, $C_4=0.189134~\mathrm{cm^{-1}}$, $C_4=0.18619~\mathrm{cm^{-1}}$, $C_4=0.189134~\mathrm{cm^{-1}}$, $C_4=0.189134~\mathrm{c$

Although fluoroform is one of the most simple molecules belonging to the point group C_{3v}, only a few studies of its rotation-vibration spectra have been reported.1-4) This is largely due to the deficiency in the resolving power of the spectrometers. Graner et al.¹⁾ have observed the infrared spectra for the v_6 and v_3 fundamentals with an approximate resolution of 0.03 cm^{-1} . As for the v_4 fundamental, the observations have been done under rather poor resolution. The molecular constants have been obtained from the analyses of the heads of the successive Q's in these works,2-4) because the resolving power was not quite enough to resolve the successive Q branches into their fine structures. The present report concerns itself with the measurement of the rotation-vibration spectra for the v_4 fundamental of fluoroform by the use of a tunable diode laser-source spectrometer and with the analysis of the rotation-vibration spectra.

Experimental

The sample used in this study was a commercial product and was used without further purification. The survey spectrum of the ν_4 band of fluoroform was recorded from 1350 to 1410 cm⁻¹ using a Nicolet 7199A Fourier transform infrared spectrometer at a resolution of 0.06 cm⁻¹. The observation was made at room temperature using a 10 cm gas cell. The sample pressure was about 9 Torr.

The high resolution spectra were recorded from 1361 to 1385 cm⁻¹ by the use of a tunable diode laser-source spectrometer (Laser Analytics, model LS 3). The sample pressure was 0.5—1.5 Torr. As the resolution of the instrument was estimated to be 10^{-4} — 10^{-3} cm⁻¹, the line-width of

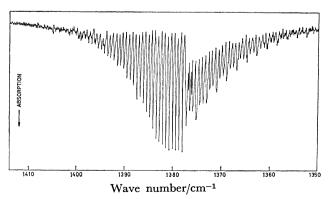


Fig. 1. The infrared absorption spectra for the v_4 band of fluoroform recorded by the Fourier transform spectrometer.

the observed spectrum was governed by the Doppler broadening. About ten modes could be oscillated in the region cited above. In order to determine an accurate frequency value, the wavelengths of a few lines for each mode were measured by the use of a Michelson interferometer-type wavelength meter which was designed and constructed by Nagai et al.5) The wavelengths of the other lines were determined relative to these frequencies by observing the interference fringes arising from a confocal germanium etalon. The free spectral range was calibrated to be $0.009929\pm$ 0.000008 cm⁻¹ by the use of the OCS lines in the 870 cm⁻¹ region. The precision of the wavelength measurement was about 0.0015 cm⁻¹. The accuracy of the wavelength measurement was restricted by the incomplete alignment of the reference He-Ne laser beam in parallel with the diode laser source.⁵⁾ It is believed to be better than 0.001 cm⁻¹.

Results and Discussion

Observed Spectra. The spectra for the v_4 band recorded by the Fourier transform spectrometer is shown in Fig. 1. We can see the usual intensity alternation due to the three-fold symmetry for the sub-bands on the low frequency side (the 1377—1350 cm⁻¹ region). These sub-bands may therefore be assigned to the successive $^{\rm R}Q$ lines. In the high frequency region (the 1377—1400 cm⁻¹ region), on the other hand, we cannot recognize any clear intensity alternations. This happens because these sub-bands on the high frequency side are mainly composed from

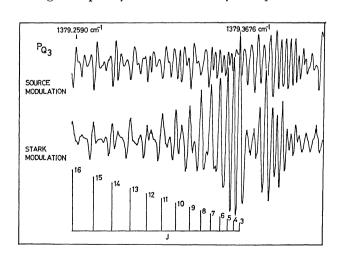


Fig. 2. The high resolution spectra observed by the diode laser-source spectrometer (upper: source modulation, lower: Stark modulation).

the ^RR lines instead of ^PQ lines. The ^PQ lines form only a background of the high frequency side.

Figure 2 shows the part of the high resolution spectra observed by the diode laser-source spectrometer which may be assigned to the ${}^{P}Q_{3}$ line series. The upper spectra were recorded by modulating the source diode by a sine wave of 5 kHz and detecting the absorption signal at 10 kHz by the use of a phase-sensitive detection method. The lower spectra were recorded by the use of the usual Stark modulation method. The modulation frequency and the electric field were 100 kHz and $200 \, V_{p-p}/cm$ (being superposed on the 200 V/cm DC field), respectively. The lower spectra were used for the J-number assignment.

The observed frequency values are summarized in Table 2, together with the assignments.

Assignment of the Observed Spectra. First, we calculated the synthetic spectra corresponding to the v_4 fundamental by using the approximate molecular constants given in the references. 1,4) The spectral simulation showed that a group of lines having the same K value forms a localized sub-band, PQ or PQ, and that a group of lines having the same (J-K) value form a localized sub-band, PP or R. The comparison between the observed and the calculated frequencies leads to the rigorous assignments of K and (J-K)numbers to the sub-bands PQ, RQ, PP, and RR. The sub-bands PP and RR can be identified from the subbands PQ and PQ, because the component lines of PP and RR show the intensity alternation due to the three-fold symmetry. The assignments of K numbers to the PQ and PQ sub-bands are confirmed by the low-resolution spectra of Fig. 1.

The assignment of J numbers to the component fine structure lines of each sub-bands can be done without ambiguity by using the Stark modulated spectra and the missing lines rule $(J \ge K)$. As the apparent intensity of a Stark modulated spectrum is observed to be stronger for lower J, the lines of the smallest J number in a sub-band is easily found. Therefore, the J number is rigorously assigned to the individual component lines in consideration of the missing lines rule and the already determined K and (J-K) values. In this way we could identify about 100 lines and make a rigorous assignment of J and K numbers. Using these lines, trial molecular constants were obtained by least-squares method; these in turn were used in the spectral simulation to make further assignments.

Determination of the Molecular Constants. The vibration-rotation energy of a symmetric top in an E-vibrational state can be written in the form (for $v_4=1$):

$$E(J,k,l) = \nu_0 + (C_4 - B_4)k^2 + B_4J(J+1) - 2(C\zeta)_4kl - D_4^J J^2(J+1)^2 - D_4^{JK}J(J+1)k^2 - D_4^K k^4 + \eta_4^J J(J+1)kl + \eta_4^K k^3l,$$
(1)

where v_0 is the vibrational energy, C_4 and B_4 are the rotational constants, ζ is the Coriolis coupling constant, D_4^{r} , D_4^{r} , and D_4^{r} are the centrifugal distortion constants, and η_4^{r} and η_4^{r} express the dependence of the Coriolis coupling on J and K.

From the selection rules for a perpendicular band $(\Delta k = +1, \Delta l = +1, \text{ and } \Delta J = 0, \pm 1; \text{ or } \Delta k = -1,$

Table 1. Molecular constants of the ν_4 band of CHF $_3$ (cm $^{-1}$)

v_0	1377.84576 (33)	η_4^J	$1.436(35) \times 10^{-6}$
B_4	0.3447884(12)	η_4^K	$-8.20(28) \times 10^{-7}$
C_4	0.18913390(54)		Ground State
$(C\zeta)_4$	0.186195(10)	B_0	0.34520105(7)
D_{4}^{J}	$3.7774(85) \times 10^{-7}$	C_0	0.18925 (10)
$D^{{\scriptscriptstyle J}{\scriptscriptstyle K}}_{{\scriptscriptstyle 4}}$	$-5.735(18) \times 10^{-7}$	$D^{\scriptscriptstyle J}_{\scriptscriptstyle 0}$	3.779×10^{-7}
D_4^{κ}	$2.941(12) \times 10^{-7}$	$D^{{\scriptscriptstyle J}{\scriptscriptstyle K}}_{\scriptscriptstyle 0}$	$-6.0375(134) \times 10^{-7}$
q_4	$-1.115(12) \times 10^{-4}$	$D^{\kappa}_{\scriptscriptstyle{0}}$	3.72×10^{-7}

Numbers in parentheses denote the standard deviation σ .

 $\Delta l = -1$, and $\Delta J = 0$, ± 1), the transition frequencies can be calculated as the differences between the energy levels of the upper and lower states. The energy of the ground state can be given by this formula:

$$E(J,k) = (C_0 - B_0)k^2 + B_0 J(J+1) - D_0^J J^2 (J+1)^2 - D_0^{JK} J(J+1)k^2 - D_0^K k^4.$$
 (2)

The B_0 , D_0^7 , $D_0^{7\kappa}$, and C_0 values were obtained by the microwave studies $^{6,7)}$ and/or by the analysis of the infrared spectra. $^{3,4,8)}$ The D_0^{κ} value was calculated from the harmonic force field. $^{7)}$ After fixing all these molecular constants related with the ground state, the molecular constants of the excited state were determined by the least-squares method. The constants thus obtained are listed in Table 1 together with the fixed ground state values. The observed frequencies are listed in Table 2 with their assignments and the calculated frequencies.

l-type Doubling. In the case of the v_4 fundamental, the effect of the l-type resonance is not so drastic as was observed for the v_6 fundamental. This is because the Coriolis coupling constant ζ_4 takes a positive value, which produces a repulsive effect on the interacting pair. As the precision of the frequency measurement exceeds the order of 10^{-3} cm⁻¹, it is possible to determine the l-type doubling constant, q_4 . In our analysis, we take l-type resonace into account as well as l-type doubling.

The perturbed energies can be obtained from the diagonalization of a 2×2 matrix of this form:

$$\begin{bmatrix} E(K-1, l=-1) & W \\ W & E(K+1, l=+1) \end{bmatrix},$$
 (3)

where K is the absolute value of k. The off-diagonal element, W, has this form:

$$W = -\frac{q_4}{2} [J(J+1) - K(K+1)]^{1/2} [J(J+1) - K(K-1)]^{1/2}.$$
(4)

The explicit expression for the perturbed energy level can be written as

$$2E_{\pm}(J,K\pm 1,\pm 1) = E(J,K-1,-1) + E(J,K+1,+1)$$

$$\pm \{E[(J,K-1,-1) - E(J,K+1,1)]^{2} + q_{*}^{2}[J(J+1) - K(K+1)][J(J+1) - K(K-1)]\}^{1/2},$$
(5)

where E_+ and E_- correspond to the perturbed states of the upper and lower levels of the interacting pair, respectively. In order to determine the sign of q_4 , the twelve lines which are definitely assigned to the

Table 2. Observed and calculated frequencies of the ν_4 band

Assignment ^a) K (J)	Observed frequency (cm ⁻¹)	Obsd-Calcd (cm ⁻¹)	Assignmenta) K (J)	Observed frequency (cm ⁻¹)	Obsd – Calcd (cm ⁻¹)	Assignment ^{a)} K (J)	Observed frequency (cm ⁻¹)	Obsd—Calcd (cm ⁻¹)
PQ 3 (3) PO 3 (4)	1379.3676 1379.3637	0.0011	RQ 6(31) RQ 6(32)	1372.8314 1372.8053	-0.0008 -0.0015	PP25 (33) PP26 (34)	1371.3531 1371.3270	-0.0088 -0.0142
PQ 3 (4) PQ 3 (5) PQ 3 (6) PQ 3 (6) PQ 3 (7) PQ 3 (8) PQ 3 (9) PQ 3 (10)	1379.3596 1379.3547	0.0006 0.0008	RQ 6(33) RQ 6(34)	1372.7799 1372.7520	-0.0007 -0.0017	PP27 (35)	1371.2982	-0.0220
PQ 3 (7) PQ 3 (8)	1379.3487 1379.3421	0.0006 0.0007	RQ 6 (35) RQ 6 (36) RQ 6 (37)	1372.7238 1372.6949	-0.0021 -0.0024	PP 1(18) PP 2(19)	1365.4570 1365.4369	0.0000 0.0001
PQ 3 (9) PQ 3(10) PQ 3(11)	1379.3350 1379.3267 1379.3172	0.0012 0.0012 0.0010	RQ 6(37) RQ 6(38) RQ 6(39)	1372.6659 1372.6352 1372.6060	-0.0020 -0.0026 -0.0008	PP 3(20) PP 4(21)	1365.4162 1365.3956	-0.0001 0.0001
PQ 3(11) PQ 3(12) PQ 3(13)	1379.3074 1379.2967	0.0010 0.0012 0.0014	RQ 7 (8)	1372.5157	-0.0015	PP 5(22) PP 6(23) PP 7(24)	1365.3746 1365.3531 1365.3316	0.0002 0.0002 0.0005
PQ 3(14) PQ 3(15)	1379.2851 1379.2724	0.0015 0.0014		1372.5088 1372.5009	-0.0013 -0.0013	PP 8(25) PP 9(26)	1365.3100 1365.2872	0.0003 0.0010 0.0008
PQ 3(16) PQ 3(17)	1379.2590 1379.2449	0.0014 0.0015	RQ 7 (9) RQ 7(10) RQ 7(11) RQ 7(11) RQ 7(12) RQ 7(13) RQ 7(14) RQ 7(15) RQ 7(16)	1372.4920 1372.4827	-0.0016 -0.0014	PP10(27) RP 1(16)	1365.2645 1365.4963	0.0010 0.0003
PQ 3(18) PQ 3(19)	1379.2299 1379.2139	0.0015 0.0014	RQ 7(13) RQ 7(14)	1372.4727 1372.4608	-0.0011 -0.0020	RP 2(15) RP 3(14)	1365.5162 1365.5358	0.0010 0.0016
PQ 3(20) PQ 3(21)	1379.1968 1379.1793	0.0011 0.0011 0.0011	RQ 7(15) RQ 7(16) RQ 7(17)	1372.4489 1372.4364 1372.4232	-0.0021 -0.0020 -0.0017	PP 1(19)	1364.7534	0.0001
PQ 3(22) PQ 3(23) PQ 3(24)	1379.1609 1379.1414 1379.1214	0.0008	RQ 7(18) RQ 7(19)	1372.4232	-0.0017 -0.0020 -0.0015	PP 2(20) PP 3(21) PP 4(22)	1364.7330 1364.7113 1364.6896	0.0007 0.0002 0.0001
PQ 3(25) PQ 3(26)	1379.1005 1379.0788	0.0009 0.0009	RQ18(19)	1364.9547	-0.0009	PP 5(23) PP 6(24)	1364.6674 1364.6453	-0.0001 -0.0001
PQ 3(27) PQ 3(28)	1379.0563 1379.0321	0.0009 0.0001	RQ18(20) RQ18(21)	1364.9396 1364.9241	-0.0010 -0.0008	PP 7(25) PP 8(26)	1364.6228 1364.6000	0.0000
PQ 3(29) PQ 3(30)	1379.0078 1378.9831	0.0000	RQ18(22) RQ18(23)	1364.9068 1364.8897	-0.0017 -0.0016	PP 9(27) PP10(28)	1364.5771 1364.5538	0.0007 0.0011
PQ 3(31) PQ 3(32)	1378.9573 1378.9305	0.0004	RQ18 (24) RQ18 (25)	1364.8717 1364.8537	-0.0016 -0.0009	PP11(29) PP12(30)	1364.5296 1364.5050	0.0010 0.0009
PQ 3(33) PQ 3(34)	1378.9031 1378.8747 1378.8452	0.0003 0.0003 -0.0001	RQ18(26) RQ18(27) RQ18(28)	1364.8337 1364.8143	-0.0015 -0.0007 -0.0009	PP13(31) PP14(32)	1364.4808 1364.4558	0.0016 0.0019
PQ 3(35) PQ 9(23)	1383.2575	0.0019	RQ18(29) RQ18(30)	1364.7932 1364.7715 1364.7491	-0.0009 -0.0009 -0.0008	PP15(33) PP16(34) PP17(35)	1364.4298 1364.4032 1364.3765	0.0016 0.0012 0.0010
PQ 9(24) PQ 9(25)	1383.2357 1383.2142	0.0011 0.0013	RQ18(31) RQ18(32)	1364.7715 1364.7491 1364.7254 1364.7012	-0.0014 -0.0017	PP18 (36)	1364.3486	0.0001
PQ 9(26) PQ 9(27)	1383.1922 1383.1682	0.0020 0.0015	RQ18(33) RQ18(34)	1364.6765 1364.6512	-0.0017 -0.0016	RR30(33) RR31(34)	1380.0676 1380.0639	0.0027 0.0023
PQ 9(28) PQ 9(29)	1383.1436 1383.1182	0.0013 0.0012	RQ18(35) RQ18(36)	1364.6251 1364.5978	-0.0015 -0.0019	RR32 (35) RR33 (36)	1380.0610 1380.0573	0.0030 0.0030
PQ 9(30) PQ 9(31)	1383.0922 1383.0655	0.0013 0.0016	RQ18 (37) RQ18 (38)	1364.5698 1364.5423	-0.0022 -0.0013	RR34 (37) RR35 (38)	1380.0532 1380.0494	0.0028 0.0031
PQ 9(32) PQ 9(33) PQ 9(34)	1383.0379 1383.0088 1382.9794	0.0019 0.0015 0.0017	RQ18(39) RQ18(40) RQ18(41)	1364.5134 1364.4832 1364.4523	-0.0011 -0.0014 -0.0017	RR36 (39) RR37 (40)	1380.0450 1380.0404	0.0029 0.0027
PQ 9(35) PQ 9(36)	1382.9489	0.0017 0.0022	RQ18 (42) RQ18 (43)	1364.4215 1364.3889	-0.0017 -0.0011 -0.0016	RR38 (41) RR39 (42) RR40 (43)	1380.0359 1380.0308 1380.0251	0.0028 0.0025 0.0018
PQ 9(37) PQ 9(38)	1382.8871 1382.8541	0.0034 0.0035	RQ18(44)	1364.3554	-0.0022	RR41 (44) RR42 (45)	1380.0200 1380.0146	0.0018 0.0016
PQ 9(39)	1382.8195	0.0028	PP28 (28) PP29 (29)	1377.0457 1377.0328	-0.0013 -0.0009	RR43(46) RR44(47)	1380.0084 1380.0026	0.0009 0.0006
PQ11(13) PQ11(14)	1384.7970 1384.7843	0.0007 0.0004 0.0009	PP31 (31) PP32 (32) PP33 (33)	1377.0062 1376.9924	-0.0003 -0.0001	RR45 (48) RR46 (49)	1379.9960 1379.9894	-0.0002 -0.0009
PQ11(15) PQ11(16) PQ11(17)	1384.7716 1384.7575 1384.7422	0.0010	PP33 (33) PP34 (34) PP35 (35)	1376.9775 1376.9628 1376.9489	-0.0008 -0.0010 -0.0002	RR47 (50) RR48 (51)	1379.9831	-0.0012 -0.0018
PQ11(17) PQ11(18) PQ11(19)	1384.7264 1384.7098	0.0009 0.0011	PP36 (36) PP37 (37)	1376.9343 1376.9193	0.0001 0.0003	RR49(52) RR50(53)	1379.9661 1379.9538	-0.0057 -0.0115
PQ11(20) PQ11(21)	1384.6922 1384.6745	0.0012 0.0021	PP38(38) PP39(39)	1376.9035 1376.8880	-0.0000 0.0001	RR18(23) RR19(24)	1381.4325 1381.4297	0.0010 0.0009
PQ11(22) PQ11(23)	1384.6551 1384.6348	0.0021 0.0022	PP40(40) PP41(41)	1376.8727 1376.8571	0.0008 0.0013	RR20 (25) RR21 (26)	1381.4268 1381.4239	0.0009 0.0010
PQ11(24) PQ11(25)	1384.6141 1384.5917	0.0027 0.0024	PP42 (42) PP43 (43)	1376.8404	0.0010 0.0012	RR22(27) RR23(28)	1381.4202 1381.4167	0.0006 0.0006
RQ 0(27) RQ 0(28)	1377.0493 1377.0290	-0.0002 -0.0006	PP44 (44) PP45 (45) PP46 (46)	1376.8069 1376.7891 1376.7729	0.0010 0.0003 0.0015	RR24 (29) RR25 (30)	1381.4128 1381.4089	0.0005 0.0005
RQ 0(28) RQ 0(29) RQ 0(30)	1377.0092 1376.9873	0.0001 -0.0005	PP47 (47) PP48 (48)	1376.7723 1376.7551 1376.7375	0.0013 0.0012 0.0014	RR26 (31) RR27 (32) RR28 (33)	1381.4040 1381.3995 1381.3948	-0.0003 -0.0005 -0.0006
RQ 0(31) RQ 0(32)	1376.9655 1376.9431	-0.0003 -0.0000	PP49(49) PP50(50)	1376.7190 1376.7003	0.0009 0.0005	RR29 (34) RR30 (35)	1381.3894 1381.3835	-0.0013 -0.0022
RQ 0(34) RQ 0(35)	1376.8954 1376.8708	-0.0002 -0.0000	PP51(51)	1376.6809	-0.0004	RR42(50)	1383.2488	-0.0004
RQ 0(36) RQ 0(37)	1376.8453 1376.8195 1376.7925	0.0000 0.0004 0.0004	PP 1 (8) PP 2 (9) PP 3(10)	1372.4545 1372.4414 1372.4296	-0.0016 -0.0024 -0.0016	RR44 (52) RR46 (54)	1383.2269 1383.2058	-0.0008 0.0003
RQ 0(38) RQ 0(39)	1376.7642	-0.0003	PP 4(11) PP 5(12)	1372.4296 1372.4169 1372.4032	-0.0016 -0.0014 -0.0020	RR48 (56) RR50 (48)	1383.1820 1383.1590	-0.0003 0.0006
RQ 6 (7) RQ 6 (8)	1373.2028 1373.1964	-0.0007 -0.0008	PP 6(13) PP 7(14)	1372.3894	-0.0024 -0.0013	RR52 (60) RR54 (62) RR56 (64)	1383.1335 1383.1082 1383.0817	-0.0001 0.0003 0.0002
RQ 6 (9) RQ 6(10)	1373.1892 1373.1813	-0.0008 -0.0008	PP 8(15) PP 9(16)	1372.3626 1372.3480	-0.0015 -0.0018	RR57(65) RR58(66)	1383.0688 1383.0546	0.0008
RQ 6(11) RQ 6(12)	1373.1725 1373.1630	-0.0009 -0.0009	PP10(17) PP11(18)	1372.3345 1372.3193	-0.0008 -0.0011	RR60(68)	1383.0267	0.0005
RQ 6(13) RQ 6(14)	1373.1530 1373.1414 1373.1296	-0.0006 -0.0011 -0.0010	PP12(19) PP 5(13)	1372.3051	-0.0001	RR 1(11) RR 2(12)	1384.8550 1384.8518	0.0022 0.0022
RQ 6(15) RQ 6(16) RQ 6(17)	1373.1296 1373.1164 1373.1030	-0.0015 -0.0014	PP 5(13) PP 6(14) PP 7(15)	1371.7069 1371.6932 1371.6779	0.0016 0.0021 0.0014	RR 3(13) RR 4(14)	1384.8476 1384.8439	0.0015 0.0014
RQ 6(17) RQ 6(18) RQ 6(19)	1373.1030 1373.0904 1373.0734	0.0003 -0.0016	PP 8(16) PP 9(17)	1371.6633 1371.6482	0.0014 0.0016 0.0016	RR 5(15) RR 6(16) RR 7(17)	1384.8397 1384.8353 1384.8310	0.0011 0.0008 0.0008
RQ 6(20) RQ 6(21)	1373.0579 1373.0400	-0.0013 -0.0025	PP10(18) PP11(19)	1371.6321 1371.6175	0.0009 0.0020	RR 7(17) RR 8(18) RR 9(19)	1384.8310 1384.8266 1384.8216	0.0008 0.0009 0.0006
RQ 6(22) RQ 6(23)	1373.0234 1373.0043	-0.0016 -0.0025	PP12(20) PP13(21)	1371.6012 1371.5845	0.0017 0.0014	RR10(20) RR11(21)	1384.8167 1384.8109	0.0006
RQ 6(24) RQ 6(25)	1372.9856	-0.0022 -0.0023	PP14 (22) PP15 (23)	1371.5683 1371.5514	0.0018 0.0019	RR12(22) RR13(23)	1384.8058 1384.7994	0.0003 -0.0005
RQ 6(26) RQ 6(27)	1372.9451 1372.9242 1372.9022	-0.0022 -0.0017 -0.0015	PP16(24) PP17(25) PP18(26)	1371.5345 1371.5162 1371.4983	0.0023 0.0016 0.0016	RR14 (24) RR15 (25)	1384.7934 1384.7879	-0.0007 -0.0001
RQ 6(28) RQ 6(29) RQ 6(30)	1372.8792 1372.8792 1372.8552	-0.0013 -0.0014 -0.0016	PP18 (26) PP19 (27) PP20 (28)	1371.4983 1371.4798 1371.4607	0.0016 0.0013 0.0008	RR16 (26) RR17 (27) RR18 (28)	1384.7814 1384.7749	-0.0004 -0.0004
0(30)			PP21(29) PP22(30)	1371.4411 1371.4204	0.0001 -0.0013	RR18 (28) RR19 (29) RR20 (30)	1384.7682 1384.7611 1384.7541	-0.0003 -0.0004 -0.0002
			PP23(31) PP24(32)	1371.3993 1371.3768	-0.0028 -0.0053	RR21 (31) RR22 (32)	1384.7462 1384.7386	-0.0002 -0.0007 -0.0006
						RR23(33)	1384.7304	-0.0009

$\begin{array}{c} \text{Assignment}^{\text{a})} \\ K\left(J\right) \end{array}$	Observed frequency (cm^{-1})	$ \begin{array}{c} \text{Obsd} - \text{Calcd} \\ \text{(cm}^{-1}) \end{array} $
RR24(34)	1384.7233	0.0001
RR25 (35)	1384.7144	-0.0004
RR26 (36)	1384.7062	-0.0000
RR27 (37)	1384.6977	0.0004
RR28 (38)	1384.6882	-0.0000
RR29(39)	1384.6800	0.0011
RR30(40)	1384.6706	0.0013
RR31 (41)	1384.6604	0.0009
RR32(42)	1384.6510	0.0015
RR33 (43)	1384.6403	0.0011
RR34 (44)	1384.6309	0.0023
RR35 (45)	1384.6203	0.0025
RR36 (46)	1384.6101	0.0033
RR37 (47)	1384.5987	0.0032
RR38 (48)	1384.5877	0.0037

The standard deviation of the residuals $\sigma = 0.0023 \ \mathrm{cm}^{-1}$.

^RQ₀ were carefully observed. The standard deviation arising in the least-squares fitting has shown that the negative sign was definitely preferable to the positive sign. The final result for q_4 is included in Table 1.99 x-y Type Coriolis Interaction. The standard deviation of 0.0023 cm⁻¹ for the overall least-squares fit is somewhat too large if we consider the precision of the wavelength measurement. This may hint at the existence of an x-y type Coriolis interaction between v_4 and $2v_3$, because the band origin of $2v_3$ is expected to be about 1400 cm⁻¹. The intensity of the $2v_3$ band is so weak, in comparison with the v_4 band, that we failed to pick up the lines of $2v_3$ in the 1400 cm⁻¹ region. Therefore, we attempted to consider the effect of such an x-y type Coriolis interaction by using the frequencies calculated for $2v_3$. The molecular constants were estimated from the results obtained for the $2v_3-v_3$. The details are:

$$\begin{split} v &= 700.1009 + 699.310 = 1399.411 \text{ cm}^{-1} \\ B &= B_0 - 0.641 \times 10^{-3} - 0.6463 \times 10^{-3} \\ &= 0.343914 \text{ cm}^{-1} \\ C &\simeq C_0 - 2 \times 1.700 \times 10^{-4} = 0.18852 \text{ cm}^{-1} \\ D^J &= 3.52 \times 10^{-7} \text{ cm}^{-1} \\ D^{JK} &\simeq D_0^{JK} - 2 \times (0.28 \times 10^{-8}) \\ &= -6.0935 \times 10^{-7} \text{ cm}^{-1} \end{split}$$
 and

 $D^K \simeq D_0^K = 3.27 \times 10^{-7} \,\mathrm{cm}^{-1}$.

The matrix elements of the Hamiltonian for the Coriolis interaction between v_4 and $2v_3$ are expressed as

$$\langle v_3 = 2, J, K | H_c | v_4 = 1, l = \pm 1, J, K \pm 1 \rangle$$

= $\pm \xi_{334} [J(J+1) - K(K\pm 1)]^{1/2}$.

The ζ_{334} value is obtained from the ξ_{334} value by this relation:¹⁰⁾

$$\xi_{334} = \left(\frac{1}{\sqrt{2}}\right) [(\nu_4/\nu_{33})^{1/2} + (\nu_{33}/\nu_4)^{1/2}] B\zeta_{334}.$$

By considering the x-y Coriolis interaction, the standard deviation value was reduced from 0.0024 cm⁻¹ to 0.0012 cm^{-1} . The final interaction parameters obtained are: $|\xi_{334}| = 0.03185 \pm 0.00054 \text{ cm}^{-1}$ and $|\zeta_{334}| = 0.065$. Other molecular constants did not change their magnitude very much, except for η_4^J and η_4^{κ} . These values were obtained to be $(6.94\pm0.32)\times$ $10^{-7} \,\mathrm{cm^{-1}}$ and $(-1.30 \pm 0.24) \times 10^{-7} \,\mathrm{cm^{-1}}$, respectively. As this treatment of the x-y type Coriolis interaction is not complete, we have listed the molecular constant values which were obtained without considering this interaction in Table 1. However it must be concluded that the interaction parameter $|\zeta_{334}|$ takes the value of about 0.065 and that the molecular constants given in Table 1 are not affected much by the neglect of this type of interaction.

The authors are grateful to Dr. Jun Nakagawa of Hiroshima University for his helpful suggestions about the computer program.

References

- G. Graner, R. Anttila, and J. Kauppinen, Mol. Phys., 38, 103 (1979).
 - 2) L. C. Hoskins, J. Chem. Phys., 53, 4216 (1970).
- 3) A. Ruoff, H. Bürger, and S. Biedermann, Spectrochim. Acta, Part A, 27, 1359 (1970).
- 4) N. J. Fyke, P. Lockett, J. K. Thomson, and P. M. Wilt, J. Mol. Spectrosc., 58, 87 (1975).
- 5) K. Nagai, K. Kawaguchi, C. Yamada, K. Hayakawa, Y. Takagi, and E. Hirota, J. Mol. Spectrosc., (accepted, 1980).
- 6) T. E. Sullivan and L. Frenkel, J. Mol. Spectrosc., 39, 185 (1971).
- 7) Y. Kawashima and A. Peter Cox, J. Mol. Spectrosc., **72**, 423 (1978).
- 8) F. N. Marsi and W. E. Blass, J. Mol. Spectrosc., 39, 98 (1971).
- 9) As for the definition of the sign of q_4 , see the text book: G. Herzberg, "Molecular Spectra and Molecular Structure," D. Van Nostrand Company, Inc., London (1967), Vol. III. p. 91.
- 10) H. Matsuura and T. Shimanouchi, *J. Mol. Spectrosc.*, **60**, 93 (1976); C. di Lauro and I. M. Mills, *ibid.*, **21**, 386 (1966).

a) For example, PQ 3(3) denotes PQ 3(3).